ENTIRE POSITIVE SOLUTIONS FOR INHOMOGENEOUS SEMILINEAR ELLIPTIC SYSTEMS
نویسندگان
چکیده
منابع مشابه
Existence of Entire Positive Solutions for a Class of Semilinear Elliptic Systems
Under simple conditions on fi and gi, we show the existence of entire positive radial solutions for the semilinear elliptic system ∆u = p(|x|)f1(v)f2(u) ∆v = q(|x|)g1(v)g2(u), where x ∈ RN , N ≥ 3, and p, q are continuous functions.
متن کاملMultiplicity of Positive Solutions for Semilinear Elliptic Systems
and Applied Analysis 3 Let Kλ,μ : E → R be the functional defined by Kλ,μ (z) = ∫ Ω (λf (x) |u| q + μg (x) |V| q ) dx ∀z = (u, V) ∈ E. (11) We know that Iλ,μ is not bounded below on E. From the following lemma, we have that Iλ,μ is bounded from below on the Nehari manifoldNλ,μ defined in (9). Lemma 3. The energy functional Iλ,μ is coercive and bounded below onNλ,μ. Proof. If z = (u, V) ∈ Nλ,μ, ...
متن کاملMinimal positive solutions for systems of semilinear elliptic equations
The paper is devoted to a system of semilinear PDEs containing gradient terms. Applying the approach based on Sattinger’s iteration procedure we use sub and supersolutions methods to prove the existence of positive solutions with minimal growth. These results can be applied for both sublinear and superlinear problems.
متن کاملMultiple solutions for an inhomogeneous semilinear elliptic equation in R
In this paper, we will investigate the existence of multiple solutions for the general inhomogeneous elliptic problem − u+ u = f (x, u) + μh (x) , x ∈ R , u ∈ H (RN) , (1.1)μ where h ∈ H−1 (RN), N ≥ 2, |f (x, u)| ≤ C1up−1 + C2u with C1 > 0, C2 ∈ [0, 1) being some constants and 2 < p < +∞. ∗Research supported in part by the Natural Science Foundation of China and NSEC †Research supported ...
متن کاملOn the existence and nonexistence of positive entire large solutions for semilinear elliptic equations
In this paper we are studying the existence of positive entire large solutions for the problem ∆u = p1(x)u α + p2(x)u f(u) in R , N ≥ 3. Moreover, we are interested in the relation between the existence or nonexistence of such solutions for the above problem and the existence or nonexistence of such solutions for the problems ∆u = p1(x)u α and ∆u = p2(x)u f(u).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 2005
ISSN: 0017-0895,1469-509X
DOI: 10.1017/s0017089504002101